ENAMS-receiving system

EMV-Referat, Joerg Logemann, DL2NI, Machtolsheim Feb.19th 2019

Table of contents

1. Antenna..2
 1.1. Measured Values..2
 1.2. Sensitivity Diagrams..3
2. Receiver..2
 2.1 Red Pitaya..4
 2.1.1. Intermodulation, f1=11,05MHz, f2=11,1MHz (RP only)..4
 2.1.2. Noisefigure and Dynamic..4
 2.2 Red Pitaya + Frontend (complete receiver)...5
 2.2.1. Frequency Response and Gain of Frontend..5
 2.2.2. Noise at Output of Frontend with and without Antenna..5
 2.2.3. Noisefigure with Preamp..6
 2.2.4. Input Level Limit (Fullscale) with Preamp...6
 2.2.5. Intercept Point..6
 2.2.6. Spurious..7
1. Antenna

Principle: active e-field sensor, k-factor=1 (variable by changing resistor values), power supply via coaxial cable

1.1. Measured Values

effective height by mechanical dimensions, 1m radiator, 1m stand, 8 radials \(h_N = 1.5 \text{ m} \)
electrical gain at 50\(\Omega \) load und 9pF antenna substitute \(v = -3.5 \text{ dB} \)
resulting k-factor \(k = 1.0 \text{ m}^{-1} \)
k-factor logarithmic \(k' = 0 \text{ dB/m} \)
input capacity \(C_i = 8.6 \text{ pF} \)
input resistance \(R_i = 5 \text{ M}\Omega \)
output resistance \(R_A = 50 \text{ \Omega} \)
OPIP2 \(+56 \text{ dBm} \)
OPIP3 \(+43 \text{ dBm} \)
1dB-compression (output) \(+11 \text{ dBm} \)

note: gain and k-factor can be changed by replacing resistors
1.2. Sensitivity Diagrams

![Sensitivity Diagrams]
2. Receiver

A Red Pitaya 14bit is being used as receiver supplemented by a diplexer network, a lowpass and 2 preamplifiers forming the frontend. For dynamic improvement purposes the 2 available A/D-channels of the red pitaya are used in 2 frequency ranges with different gains. The diplexer cutoff frequency is 8MHz, thus a range up to 8MHz and another 8MHz to 30MHz is implemented. The frontend also contains a 32MHz lowpass of 5th order. The gain of the 2 preamplifiers can be dimensioned independently to optimize dynamic, 10dB (low band) and 20dB (high band) are used momentary. Furthermore the frontend contains a bias-T and a current limiter for the 15V supply of the active antenna.

Attention when measuring the frontend: the antenna input is connected to the 15V DC powersupply for the antenna permanently! Use a DC-Block!

2.1 Red Pitaya

Software: HDSDR, input attenuator of RP deactivated (jumper in middle position), external 50Ω load applied (with T-connector)

2.1.1. Intermodulation, f1=11,05MHz, f2=11,1MHz (RP only)

<table>
<thead>
<tr>
<th>input level</th>
<th>measured</th>
<th>IM</th>
<th>IP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x -30dBm</td>
<td>2 x -42dBm</td>
<td>68dB</td>
<td>+4dBm</td>
</tr>
<tr>
<td>2 x -20dBm</td>
<td>2 x -32dBm</td>
<td>72dB</td>
<td>+16dBm</td>
</tr>
<tr>
<td>2 x -10dBm</td>
<td>2 x -22dBm</td>
<td>71dB</td>
<td>+25,5dBm</td>
</tr>
<tr>
<td>2 x -3dBm</td>
<td>2 x -15dBm</td>
<td>65dB</td>
<td>+29,5dBm</td>
</tr>
</tbody>
</table>

2.1.2. Noisefigure and Dynamic

The noise figure was measured with the noise generator SUF2 (R&S). A noise level of -133.9dBm/Hz caused a noise increase of 3dB. Thus the resulting noise figure is **F=40.1dB**. For comparison: ELAD FDMS2: F=18.1dB, Perseus: F=23.1/25.5dB with and without preamp. Maximum input level (fullscale A/D converter) is +5dBm.
2.2 Red Pitaya + Frontend (complete receiver)

2.2.1. Frequency Response and Gain of Frontend

![Graph showing frequency response and gain](image)

<table>
<thead>
<tr>
<th>Marker</th>
<th>Trace</th>
<th>Type</th>
<th>X Axis</th>
<th>Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>1</td>
<td>Freq</td>
<td>450.000 MHz</td>
<td>10.34 dB</td>
</tr>
<tr>
<td>2D</td>
<td>1</td>
<td>Freq</td>
<td>7.00000 MHz</td>
<td>6.20 dB</td>
</tr>
<tr>
<td>3D</td>
<td>2</td>
<td>Freq</td>
<td>14.20000 MHz</td>
<td>19.55 dB</td>
</tr>
<tr>
<td>4D</td>
<td>2</td>
<td>Freq</td>
<td>28.50000 MHz</td>
<td>17.99 dB</td>
</tr>
</tbody>
</table>

2.2.2. Noise at Output of Frontend with and without Antenna

- Noise level at output, low band (5 MHz) without antenna: \(P_R = -158.6 \) dBm/Hz
- Noise level at output, low band (5 MHz) with antenna: \(P_R = -142.6 \) dBm/Hz
- Noise level at output, high band (14 MHz) without antenna: \(P_R = -148.6 \) dBm/Hz
- Noise level at output, high band (14 MHz) with antenna: \(P_R = -130.5 \) dBm/Hz

When measuring „with antenna“ the radiator was removed and substituted by an equivalent load (9pF).
2.2.3. Noisefigure with Preamp

noisefigure complete RX:

2.2.4. Input Level Limit (Fullscale) with Preamp

- lowband: -2dBm
- highband: -13dBm

2.2.5. Intercept Point

- lowband (6,0 / 6,5MHz)
 - IP2 @ 2 x -20dBm: +52dBm (summ) / +56dBm (diff.)
 - IP3 @ 2 x -20dBm: +20dBm
- highband (10,0 / 19,0MHz)
 - IP2 @ 2 x -20dBm: +37dBm (summ) / +49dBm (diff.)
 - IP3 @ 2 x -20dBm: +10dBm
2.2.6. Spurious

<table>
<thead>
<tr>
<th>Frequency [MHz]</th>
<th>level [dBm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,110</td>
<td>-115</td>
</tr>
<tr>
<td>0,220</td>
<td>-113</td>
</tr>
<tr>
<td>2,148</td>
<td>-115</td>
</tr>
<tr>
<td>2,258</td>
<td>-116</td>
</tr>
<tr>
<td>11,303</td>
<td>-116</td>
</tr>
<tr>
<td>13,566</td>
<td>-117</td>
</tr>
<tr>
<td>18,088</td>
<td>-116</td>
</tr>
<tr>
<td>25,000</td>
<td>-118</td>
</tr>
<tr>
<td>29,395</td>
<td>-116</td>
</tr>
</tbody>
</table>